There's rarely time to write about every cool science-y story that comes our way. So this year, we're once again running a special Twelve Days of Christmas series of posts, highlighting one science story that fell through the cracks each day, from December 25 through January 5. Today: How AI is helping shed light on famous paintings.
X-rays are a well-established tool to help analyze and restore valuable paintings because the rays' higher frequency means they pass right through paintings without harming them. X-ray imaging can reveal anything that has been painted over a canvas or where the artist may have altered his (or her) original vision. But the technique has its limitations, and that's where machine learning can prove useful. Two papers this fall illustrated the use of AI to solve specific problems in art analysis and conservation: one to reconstruct an underpainting in greater detail, and the other to make it easier to image two-sided painted panels.
Picasso's The Old Guitarist is one of the best-known works from the artist's so-called "Blue Period." Two decades ago, X-ray and infrared analysis revealed that he had re-used an older canvas (a common practice for struggling artists of the period). There was another painting underneath, of a seated woman, that matched a sketch Picasso had included in a letter to a friend. But the X-ray and infrared images couldn't provide sufficient detail to get a sense of what the original painting really looked like, especially the choice of colors.
In a paper posted to the physics arXiv in September, Anthony Bourached and George Cann of the University College London described how they employed machine learning to reconstruct a full-color image of Picasso's original underpainting—specifically, a technique called neural style transfer, originally developed a few years ago by researchers at the University of Tübingen in Germany. Per Technology Review:
Neural networks consist of layers that analyze an image at different scales. The first layer might recognize broad features like edges, the next layer sees how these edges form simple shapes like circles, the next layer recognizes patterns of shapes, such as two circles close together, and yet another layer might label these pairs of circles as eyes. This kind of network would be able to recognize eyes in paintings in a wide variety of styles, from Leonardo da Vinci to Van Gogh to Picasso. In each case, the eyes form a similar pattern that the machine can pick out.The network can also be trained to recognize distinctive styles, telling the difference between a Picasso and, say, a Van Gogh painting, for instance. It's also possible to reverse the process: give the neural network an image, and then superimpose a given style onto it. That's what Bourached and Cann did with the X-ray image of the painting under The Old Guitarist. (They also applied the technique to another Picasso canvas to reconstruct an underpainting done by Spanish painter Santiago Rusinol.) It may or may not be how Picasso chose to paint it, but the process is still useful for gaining a better understanding of subjective human creativity. "Our method of combining original but hidden artwork, subjective human input, and neural style transfer helps to broaden an insight into an artist's creative process," the authors wrote.