United Launch Alliance's Vulcan rocket, under contract for dozens of flights for the US military and Amazon's Kuiper broadband network, lifted off from Florida on its second test flight Friday, suffered an anomaly with one of its strap-on boosters, and still achieved a successful mission, the company said in a statement.
This test flight, known as Cert-2, is the second certification mission for the new Vulcan rocket, a milestone that paves the way for the Space Force to clear ULA's new rocket to begin launching national security satellites in the coming months.
While ULA said the Vulcan rocket continued to hit its marks during the climb into orbit Friday, engineers are investigating what happened with one of its solid rocket boosters shortly after liftoff.
After a last-minute aborted countdown earlier in the morning, the 202-foot-tall (61.6-meter) Vulcan rocket lit its twin methane-fueled BE-4 engines and two side-mounted solid rocket boosters to climb away from Cape Canaveral Space Force Station, Florida, at 7:25 am EDT (11:25 UTC) Friday.
A little tilt
As the rocket arced east from Cape Canaveral, a shower of sparks suddenly appeared at the base of the Vulcan rocket around 37 seconds into the mission. The exhaust plume from one of the strap-on boosters, made by Northrop Grumman, changed significantly, and the rocket slightly tilted on its axis before the guidance system and main engines made a steering correction. Videos from the launch show the booster's nozzle, the bell-shaped exhaust exit cone at the bottom of the booster, fall away from the rocket. "It looks dramatic, like all things on a rocket," Bruno wrote on X. "But it’s just the release of the nozzle. No explosions occurred."During the ascent of the Vulcan rocket on the #Cert2 mission, there appeared to be an issue with the solid rocket booster on the right side of the vehicle as seen from the KSC Press Site. However, the Centaur was able to reach orbit.https://t.co/3iwWLVWZHp 📹: @ABernNYC pic.twitter.com/5h06ffNMXr — Spaceflight Now (@SpaceflightNow) October 4, 2024The Federal Aviation Administration, which licenses commercial space launches in the United States, said in a statement that it assessed the booster anomaly and "determined no investigation is warranted at this time." The FAA is not responsible for regulating launch vehicle anomalies unless they impact public safety. The Vulcan rocket comes in several configurations, with zero, two, four, or six solid-fueled boosters clustered around the liquid-fueled core stage. ULA can tailor the configuration based on the parameters of each mission, such as payload mass and target orbit. The boosters, which Northrop Grumman calls graphite epoxy motors, are 63 inches (1.6 meters) in diameter and 72 feet (22 meters) long. Their nozzles are made of a composite heat-resistant carbon-phenolic material. Bruno added that the rest of the damaged booster's composite casing held up fine during its roughly 90-second burn, but the anomaly caused "reduced, asymmetric thrust" that the rocket compensated for during the rest of its ascent into space. The Federal Aviation Administration, which regulates commercial space launches, is not immediately requiring an investigation into the booster anomaly. The FAA said it is "assessing the operation and will issue an updated statement if the agency determines an investigation is warranted." Remarkably, the Vulcan rocket soldiered on and jettisoned both strap-on boosters to fall into the Atlantic Ocean. They're not designed for recovery, so ULA and Northrop Grumman engineers will have to piece together what happened from imagery and performance data beamed down from the rocket in flight. The BE-4 main engines, supplied by Jeff Bezos' space company Blue Origin, appeared to work flawlessly for the first five minutes of the flight. The core stage shut down its engines and separated from Vulcan's Centaur upper stage, which ignited two Aerojet Rocketdyne RL10 engines to propel the rocket into orbit. Live data displayed on ULA's webcast of the launch suggested the RL10 engines fired for approximately 20 seconds longer than planned, apparently to compensate for the lower thrust from the damaged booster during the first phase of the flight. The Centaur upper stage completed a second burn about a half-hour into the mission. The rocket did not carry a real satellite. Earlier this year, ULA decided to launch a dummy payload to simulate the mass of a spacecraft, when it became clear the original payload for Vulcan's second flight—Sierra Space's first Dream Chaser spaceplane—would not be ready to fly this fall. ULA says it self-funded most of the cost of the Cert-2 test flight, which Bruno suggested was somewhere below $100 million.